Increased Bioplastic Production with an RNA Polymerase Sigma Factor SigE during Nitrogen Starvation in Synechocystis sp. PCC 6803

نویسندگان

  • Takashi Osanai
  • Keiji Numata
  • Akira Oikawa
  • Ayuko Kuwahara
  • Hiroko Iijima
  • Yoshiharu Doi
  • Kan Tanaka
  • Kazuki Saito
  • Masami Yokota Hirai
چکیده

Because cyanobacteria directly harvest CO2 and light energy, their carbon metabolism is important for both basic and applied sciences. Here, we show that overexpression of the sigma factor sigE in Synechocystis sp. PCC 6803 widely changes sugar catabolism and increases production of the biodegradable polyester polyhydroxybutyrate (PHB) during nitrogen starvation. sigE overexpression elevates the levels of proteins implicated in glycogen catabolism, the oxidative pentose phosphate pathway, and polyhydroxyalkanoate biosynthesis. PHB accumulation is enhanced by sigE overexpression under nitrogen-limited conditions, yet the molecular weights of PHBs synthesized by the parental glucose-tolerant and sigE overexpression strain are similar. Although gene expression induced by nitrogen starvation is changed and other metabolites (such as GDP-mannose and citrate) accumulate under sigE overexpression, genetic engineering of this sigma factor altered the metabolic pathway from glycogen to PHB during nitrogen starvation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A response regulator Rre37 and an RNA polymerase sigma factor SigE represent two parallel pathways to activate sugar catabolism in a cyanobacterium Synechocystis sp. PCC 6803.

Sugar catabolic genes are induced during nitrogen starvation in a cyanobacterium Synechocystis sp. PCC 6803, but the underlying regulatory mechanism still remains to be completely characterized. In this study, we showed by molecular genetics and transcriptome analyses that a response regulator Rre37 (encoded by sll1330), whose expression is enhanced by nitrogen depletion under the control of Nt...

متن کامل

Positive regulation of sugar catabolic pathways in the cyanobacterium Synechocystis sp. PCC 6803 by the group 2 sigma factor sigE.

The sigE gene of Synechocystis sp. PCC 6803 encodes a group 2 sigma factor for RNA polymerase and has been proposed to function in transcriptional regulation of nitrogen metabolism. By using microarray and Northern analyses, we demonstrated that the abundance of transcripts derived from genes important for glycolysis, the oxidative pentose phosphate pathway, and glycogen catabolism is reduced i...

متن کامل

Impact of Different Group 2 Sigma Factors on Light Use Efficiency and High Salt Stress in the Cyanobacterium Synechocystis sp. PCC 6803

Sigma factors of RNA polymerase recognize promoters and have a central role in controlling transcription initiation and acclimation to changing environmental conditions. The cyanobacterium Synechocystis sp. PCC 6803 encodes four non-essential group 2 sigma factors, SigB, SigC, SigD and SigE that closely resemble the essential SigA factor. Three out of four group 2 sigma factors were simultaneou...

متن کامل

Characterization of single and double inactivation strains reveals new physiological roles for group 2 sigma factors in the cyanobacterium Synechocystis sp. PCC 6803.

Cyanobacteria are eubacteria that perform oxygenic photosynthesis like plants. The initiation of transcription, mediated by the RNA polymerase holoenzyme, is the main determinant of gene regulation in eubacteria. The sigma factor of the RNA polymerase holoenzyme is responsible for the recognition of a promoter sequence. In the cyanobacterium Synechocystis sp. PCC 6803, the primary sigma factor,...

متن کامل

Changes in primary metabolism under light and dark conditions in response to overproduction of a response regulator RpaA in the unicellular cyanobacterium Synechocystis sp. PCC 6803

The study of the primary metabolism of cyanobacteria in response to light conditions is important for environmental biology because cyanobacteria are widely distributed among various ecological niches. Cyanobacteria uniquely possess circadian rhythms, with central oscillators consisting from three proteins, KaiA, KaiB, and KaiC. The two-component histidine kinase SasA/Hik8 and response regulato...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2013